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Abstract

To practically combine MRI datasets from different sites,
we must be able to remove biases in each image that point
to the site at which that MR image was taken. The biases in
this case are any markers or difference between MR images
from different sites.

To achieve this, we outline the architecture that will pre-
serve information in each image and make accurate predic-
tions while mitigating the presence of confounds. Using the
ABIDE dataset, we aim to develop an MRI debiasing ar-
chitecture that will minimize the accuracy of site prediction
and maximize the accuracy of quality prediction.

We then detail the methods and architectures tested in the
development of the debiasing network. We discuss pitfalls
and issues encountered. Lastly, we discuss related work and
the extensibility of this architecture for other use cases.

1. Introduction

Neuroscience researchers can now leverage advances in
the accuracy and explainability of convolutional neural net-
works to draw conclusions from MRI and fMRI data. How-
ever, reproducible neuroscience is difficult to achieve with-
out large datasets. Hand-collected and hand-labelled MRI
data can be difficult to aggregate across medical sites, es-
pecially when scanners have disparate settings and MR im-
ages have different sizes and resolutions. If not properly
dealt with, differences brought about by site and scanner
variation may be falsely attributed to biological differences.
In order to mitigate these site effects, the ultimate goal is to
remove site effects from the data, effectively “de-biasing”
each image.

We develop and apply adversarial methods to a set of
brain MRI data. For each image, we have a quality score la-
bel given to the image by a rater. Intuitively, preserving this
quality score and retaining the ability to predict this quality
score while de-biasing data allows us to preserve the qual-
ity of and important information from each image while re-
moving site bias. To do this, we evaluate several adversar-
ial network architectures in the context of removal of such
biases from MR images. On a high level, we create an ad-
versarial network architecture that has three components as
shown in Figure 1 (building on the structure of a conditional
generative adversarial network [5] [3]):

1. a discriminator to predict the site of an input image
2. a discriminator to predict the quality of an input image
3. a de-biasing component (here, the generator) that takes

the input image and outputs a modified image. This
component minimizes the accuracy of (1) and maxi-
mizes the accuracy of (2)

Figure 1. The three components of the adversarial architecture.

We will describe the architecture of each component as
well as specific design choices that were made.
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2. Related Work
Our work builds off the work of Goodfellow et. al [3] in

generative adversarial frameworks. This a growing area of
research and allows us to solve competing objective prob-
lems in the hopes of reaching a stable solution.

In addition, we build on the work of Mirza et. al [5] in
conditional generative adversarial networks. They provide
a framework to feed in the data they wish to condition on
to both the generator and discriminator. We utilize part of
this framework by conditioning both discriminators and the
generator on the original brain MR images.

Instead of creating images to fool a discriminator, we
wish to modify an existing image to meet a certain objec-
tive.

Zhang et. al [7] present a framework to mitigate the use
of biases in prediction. They describe a two-player model
in which the objective is to maximize the predictor’s abil-
ity to predict some classification while minimizing the ad-
versary’s ability to predict the bias. Our method may pro-
vide more insight into the bias detection and removal pro-
cess because we can examine the output of a generator. Our
method also has potential for transfer learning, as once the
generator is trained, it can be used independently to de-bias
data.

3. Data
We apply methods to the Autism Brain Imaging Data Ex-

change (ABIDE I) dataset, which aggregates smaller sets of
data from 17 different sites, as described in detail and uti-
lized in [2].

Each MR image is represented as a three-dimensional
matrix, which can be visualized with the medical research
image viewing software Mango. A typical brain MR image
is shown in Figure 2. We can see that the three dimensional
MR image captures three views of the brain: axial, coronal,
and sagittal.

Because this dataset consists of 17 sets of images from
different sites, images from a particular site can have differ-
ent sizes and resolutions than images from other sites. The
MRI have all been standardized to be of size 106 × 128 ×
110. The output images from the debiasing component of
the architecture are of this standard size as well. No data
augmentation or other preprocessing steps were taken.

In total, the dataset contains 1103 MRI. This was ran-
domly split into 803 training examples, 200 validation ex-
amples, and 100 test examples. Due to RAM constraints,
we were limited to a batch size of 4 to train. This means
each epoch over the training data is about 200 training steps.

3.1. Labels

Because the architecture encapsulates two discrimina-
tors, each data point is associated with two labels: a quality

Figure 2. A typical brain MR image. Top image is axial view. Left
image is coronal view. Right image is sagittal view.

score label and a site label.
Each site label is simply which site the brain MRI is

from, one of the following 17 sites (corresponding class as
an integer):

• California Institute of Technology (0)
• Carnegie Mellon University (1)
• Kennedy Krieger Institute (2)
• Ludwig Maximilians University Munich (4)
• NYU Langone Medical Center (5)
• Olin, Institute of Living at Hartford Hospital (7)
• Oregon Health and Science University (6)
• San Diego State University (10)
• Social Brain Lab, BCN NIC UMC Groningen and

Netherlands Institute for Neurosciences (9)
• Stanford University (11)
• Trinity Centre for Health Sciences (12)
• University of California, Los Angeles (13)
• University of Leuven (3)
• University of Michigan (14)
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Site + Quality - Quality Total MRIs
0 35 3 38
1 23 4 27
2 44 11 55
3 48 16 64
4 45 12 57
5 158 26 184
6 27 1 28
7 19 17 36
8 46 11 57
9 22 8 30

10 13 23 36
11 0 40 40
12 40 9 49
13 72 28 100
14 35 110 145
15 96 5 101
16 19 37 56
- 742 361 1103

Table 1. Number of examples per site label class and quality label
class

• University of Pittsburgh School of Medicine (8)
• University of Utah School of Medicine (15)
• Yale Child Study Center (16).
Thus, the site label is for one of 17 classes.
Each image has at least one but up to 3 quality scores

(-1, 0, or +1), given by a human rating the quality of the
MRI. To build the quality score label, we averaged the hu-
man ratings and assigned a quality score of 1 if the average
rating was greater than 0; the MRI was assigned a quality
score of 0 is the average rating was less than or equal to 0.
Thus, the quality score label is for one of 2 classes. Because
there were three human raters for quality, and these labels
did not always agree, the quality labels are somewhat noisy.
We will present a benchmark for quality accuracy and site
accuracy in a later section.

3.2. Class Imbalance

In the ABIDE II dataset, both the site and quality score
labels are victims of class imbalance, which can heavily im-
pact the performance of any algorithm [1]. Table 1 shows
the number of examples in each class for each label.

We can see here that about 70% of the data has a ’good’
quality label of 1, so only 30% has a ’bad’ quality label
of 0. It is also important to note that several sites (5, 14,
15, 13) have significantly more examples than other sites.
In addition, some of the sites (11, 14) are highly correlated
with poor quality MR images. while other sites (0, 1, 6, 15)
are highly correlated with good quality MR images.

In our data pipeline, each training batch is rejection re-
sampled to contain 50% good quality and 50% bad qual-

ity MR images. Rejection resampling for both labels at the
same time proved inefficient, but a better solution to this
dual class imbalance should be developed. In our results,
we note that balancing just the quality label for each batch
mitigates some of the class imbalance for the site labels as
well.

4. Model and Methods
4.1. Layers

Because we have three-dimensional images, we utilize
three-dimensional convolutions in each architecture. Each
kernel for the three dimensional convolutional layer spans
4 pixels. In the discriminators, we utilize strides of 1. In
the generator, we utilize strides of 2 for each convolutional
layer to allow downsampling of the image.

The generator also has transpose convolutional layers,
with a kernel size of 4 and stride of 2. This allows for image
upsampling.

Because the ABIDE II dataset is not very large com-
pared to many typical datasets used in computer vision
tasks, we apply two types of regularization to prevent over-
fitting: dropout and batch normalization. Both dropout and
batch normalization are applied in the discriminators and
the generator. Dropout randomly drops neurons in the lay-
ers to which it is applied with a pre-specified probability.
We used a dropout probability of 0.3. Dropout was applied
only when training. In addition to acting as a slight regular-
izer, batch normalization allows us to standardize training
examples over each batch and standardize testing data with
a running average taken from batches during training.

We utilize a few types of activation functions. With a
convolutional layer, the Leaky ReLU was used. For each
element x of a tensor, the resulting activation after passing
through the Leaky ReLU is max(α · x, x) with α = 0.1.
Leaky ReLU is advantageous because it avoids saturated or
killed gradients. With the transposed convolutional layers,
we utilize the hyperbolic tangent, as this is standard for most
transposed convolutional layers [4]. Thus, for each element
x of a tensor, the resulting activation after passing through
the hyperbolic tangent layer is tanh(x).

The last 2 layers of the quality and site discriminators are
affine, or fully connected, layers. These allow us to predict
for a certain number of classes, here 2 for the quality dis-
criminator and 17 for the site discriminator. The last affine
layer outputs logits for each class, so we can calculate soft-
max loss or cross entropy loss or take the argmax to find a
prediction.

4.2. Discriminator Architectures

Although we experiment with the architecture of the gen-
erator later on, we keep the discriminator architectures the
same. The output of the generator, which is of the same
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size and shape as the original MR images, is the input to
each of the discriminators, whose architecture is detailed
below. Both discriminators have exactly the same architec-
ture, save for the last layer, which is a fully connected layer
with the number of units equal to the number of classes for
the label (2 for quality, 17 for site).

1. 3D convolution with 32 kernels of size 4 and stride 1
2. Max pooling with window size of 2 and stride of 2
3. Leaky ReLU with α = 0.1
4. 3D convolution with 16 kernels of size 4 and stride 1
5. Max pooling with window size of 2 and stride of 2 2
6. Batch normalization with momentum of 0.1
7. Leaky ReLU with α = 0.1
8. Dropout with keep probability of 0.7
9. 3D convolution with 8 kernels of size 4 and stride 1

10. Max pooling with window size of 2 and stride of 2
11. Batch normalization with momentum of 0.1
12. Leaky ReLU with α = 0.1
13. Dropout with keep probability of 0.7
14. 3D convolution with 1 kernel of size 4 and stride 1
15. Max pooling with window size of 2 and stride of 2
16. Fully connected layer with 100 units
17. Leaky ReLU with α = 0.1
18. Dropout with keep probability of 0.7
19. Fully connected layer with 17 units (2 units) for site

discriminator (quality discriminator)

4.3. Loss

To calculate loss for each network, we examine the logits
produced by each of the discriminator networks. We com-
pare the logits to the true labels by using the cross entropy
loss.

Site Loss: For examples i = 1, . . . , n, and classes j =
0, .., 16, we are given true site labels ysi for each MR image
xi. Each label is one-hot encoded, which means ysij = 1 if
xi belongs to class j and ysij = 0 otherwise. In addition, the
site discriminator produces probability psij of xi belonging
to class j. Then, we can define the cross entropy loss for
site as follows:

Ls = − 1

n

n∑
i=1

16∑
j=0

ysij log(p
s
ij) (1)

Quality Loss: For examples i = 1, . . . , n, and classes
k = 0, 1, we are given true site labels yqi for each MR image
xi. In addition, the quality discriminator produces probabil-
ity pqik of xi belonging to class k. Then, we can see that the
cross entropy loss simplifies because quality prediction is
a binary classification problem. Instead of using a one-hot
encoding, we can simply use yqi and pqi as follows:

Lq = − 1

n

n∑
i=1

[yqi log(p
q
i ) + (1− yqi ) log(1− pqi )] (2)

De-biasing Generator Loss: The generator loss is
where we can tie together our two objectives: maximize
quality prediction and minimize site prediction. The gener-
ator modifies input images, and the output is fed into the site
discriminator and quality discriminator in parallel. Thus,
we update the discriminator based on the site loss and the
quality loss. To maximize quality prediction, we minimize
the associated loss Lq . To minimize site prediction, we
maximize the associated loss Ls, equivalent to minimizing
−Ls. Since we aim to minimize LG, we simply add the
two functions to minimize, resulting in Lq − Ls. We add
Wq,Ws as weights to allow for tuning of the loss function.
Thus, the loss of the de-biasing generator is the weighted
difference between the Ls and Lq:

LG =Wq · Lq −Ws · Ls (3)

4.4. Training

When training, we update the model in 3 steps. First we
feed a batch of data through the network. Then we update
the de-biasing generator based on the site and quality pre-
dictions. Next, we update the quality discriminator. Lastly,
we update the site discriminator.

For each of the three components (de-biasing genera-
tor, quality discriminator, and site discriminator), the update
step is made using Adam with a learning rate of 0.0001 and
momentum of 0.5. Adversarial networks are notoriously
finicky with respect to convergence. Salimans et. al /cite-
GANtraining also recommend testing lower learning rates.
In addition, we use a small batch size due to memory con-
straints, so we employ a low learning rate to avoid over-
shooting at each training step. Having tested learning rates
in the range 10−6 to 10−1, the selected learning rate 10−4

had the best convergence properties.

5. Experiments and Results

5.1. Software and Hardware

We implemented the architecture using Tensorflow in
Python. We employed the use of two MRI-specific Python
packages: NiBabel to read the MR image files (.nii/.nii.gz)
and NiLearn to resample the MR images.

Visualizations of the original MR images and outputs
of the de-biasing generator were produced with the use of
Mango (Multi-image Analysis GUI), a medical research im-
age viewing software.

I based my implementation on the pix2pix [4] imple-
mentation as well as on CS 231n assignment 3.

In addition to using 8 vCPUs for data input and output,
much of the computation was done on two NVIDIA Tesla
K80 GPUs, each with 12GB of memory.
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5.2. Benchmarks and Metrics

A natural control for our framework is the same setup
as Figure 1, but with the generator replaced by the identity
function. Thus, the original image is fed into the quality dis-
criminator and the site discriminator without modification.
This is mathematically equivalent to training two separate
convolutional neural networks, one to predict site and an-
other to predict quality.

Utilizing the discriminator architecture detailed in sec-
tion 4.2, we achieved 85% accuracy for quality prediction
(due to noisy labels) and 96% accuracy for site predic-
tion. We note that the 85% accuracy for quality prediction
achieved with no image modification represents a ceiling
on quality accuracy we can expect from an adversarial ap-
proach. With a reduction in site information in each de-
biased MR image, we can expect some marginal decrease
in quality accuracy.

5.3. Three Conditionally Generative Architectures

The first architecture approached for the de-biasing gen-
erator was that of pure convolution. This network’s archi-
tecture was as follows:

1. 3D convolution with 16 kernels of size 4 and stride 1
2. Batch normalization with momentum of 0.1
3. Leaky ReLU with α = 0.1
4. Dropout with keep probability of 0.7
5. 3D convolution with 8 kernels of size 4 and stride 1
6. Batch normalization with momentum of 0.1
7. Leaky ReLU with α = 0.1
8. Dropout with keep probability of 0.7
9. 3D convolution with 4 kernels of size 4 and stride 1

10. Batch normalization with momentum of 0.1
11. Leaky ReLU with α = 0.1
12. Dropout with keep probability of 0.7
13. 3D convolution with 1 kernel of size 4 and stride 1

The images produced by this architecture are shown in Fig-
ure 3. They tended to be overly blurry. In addition, quality
loss increased after several epochs (see Figure 4), as the
convolutions blurred out many of the minute details used in
quality detection. In the next attempt, we want to search for
a method that retains a higher level of resolution.

The second generative architecture approached was that
of an encoder/decoder. This network’s architecture was as
follows:

1. 3D convolution with 16 kernels of size 4 and stride 2
2. Leaky ReLU with α = 0.1
3. 3D convolution with 32 kernels of size 4 and stride 2
4. Batch normalization with momentum of 0.1
5. Leaky ReLU with α = 0.1
6. Dropout with keep probability of 0.7
7. 3D transposed convolution with 32 kernels of size 4

and stride 2
8. Batch normalization with momentum of 0.1

Figure 3. Brain MR image output from first de-biasing attempt
using several purely convolutional layers.

Figure 4. Lq with respect to time for the first de-biasing attempt
using several purely convolutional layers. Blue line is testing. Or-
ange line is training
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9. tanh
10. 3D transposed convolution with 1 kernels of size 4 and

stride 2

Figure 5. LG with respect to time for the second de-biasing at-
tempt using convolutional then transposed convolutional layers.
Blue line is testing. Orange line is training.

This architecture did not have very smooth convergence
for either loss. Variance was high for several epochs. Af-
ter adding smoothing, the generator loss looked stagnant,
as shown in Figure 5. The images produced by this ar-
chitecture are shown in Figure 6. They had a very distinct
checkerboard pattern. We found that this phenomenon had
been seen before [6]. The advice given by the authors was
to use a different method of upsampling or to supplement
upsampling with another operation that prevents informa-
tion loss.

Isola et. al [4] maintained that the checkerboard issue
was mitigated with the use of skip connections, which pre-
served the scale of resolution and granularity of images be-
fore each iteration of downsampling. Utilizing skip connec-
tions within the previous architecture yielded the following
architecture:

1. 3D convolution with 16 kernels of size 4 and stride 2
2. Leaky ReLU with α = 0.1
3. 3D convolution with 32 kernels of size 4 and stride 2
4. Batch normalization with momentum of 0.1
5. Leaky ReLU with α = 0.1
6. Dropout with keep probability of 0.7
7. 3D transposed convolution with 16 kernels of size 4

and stride 2
8. Batch normalization with momentum of 0.1
9. tanh

10. Resizing/padding to be of the same size as the output
of Layer 2

11. Concatenation with Layer 2
12. 3D transpose convolution with 4 kernels of size 4 and

stride 2

Figure 6. Brain MR image output from second de-biasing attempt
using convolutional then transposed convolutional layers.

13. Batch normalization with momentum of 0.1
14. Leaky ReLU with α = 0.1
15. Dropout with keep probability of 0.7
16. 3D convolution with 1 kernel of size 4 and stride 1

De-biased images resulting from this architecture can be
seen in Figure 7. This image is more granular than the re-
sults from our first attempt but does not contain the checker-
board artifacts from our second attempt.

Over the course of training, quality loss decreased
steadily (Figure 8). Quality prediction on these de-noised
images was 76% on the test set. A confusion matrix for
these quality predictions is shown in Table 2. Site predic-
tion on these de-noised images was 12% on the test set.

6. Conclusion and Future Work

We have surveyed the use of several generative architec-
tures to remove site effects from data while preserving qual-
ity information, with fairly successful results. This method-
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Figure 7. Brain MR image output from third de-biasing attempt
using convolutional then transposed convolutional layers with skip
connections.

+ Quality Predicted - Quality Predicted Total
+ Quality True 47 19 66
- Quality True 5 29 34

Total 52 48 100

Table 2. Confusion matrix for predictions on test set

ology can be applied to many different applications, not
even purely image-related applications.

With more time, I would further tune each network and
experiment with more complex and deeper CNN architec-
tures. The largest bottleneck here was compute time. With
more compute power, I would be able to use larger batch
sizes, so training would go more smoothly and training loss
would have less variance than during my experiments.

Figure 8. Lq with respect to time for the third de-biasing attempt
using convolutional then transposed convolutional layers with skip
connections. Blue line is testing. Orange line is training.
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